Performance Analysis of a Novel Photovoltaic Thermal PVT Double Pass Solar Air Heater with Cylindrical PCM Capsules using CFD

Sahibzada Imad Ud Din, Ag Sufiyan Abd Hamid, Adnan Ibrahim, Faisal Nawab, Kamaruzzaman Sopian, Ahmad Fazlizan, Amir Ishak

Abstract


Photovoltaic thermal double pass solar air heater (PVT-DPSAH) with PCM capsules in the bottom channel is a promising design for enhancing the system performance.  The PVT-DPSAH comprises a glass cover, absorber plate (PV), PCM capsules, and back plate.  The current study uses COMSOL Multiphysics software to perform a computational fluid dynamics (CFD) analysis of a novel PVT-DPSAH with vertical cylindrical PCM capsules in the second channel.  To solve the differential equations in the 3D computational domain, the finite element method (FEM) is employed.  This study uses the high Reynolds (Re) number and ?-? turbulent flow model with enhanced wall functions.  The impact of varying solar irradiance levels (500- 800 W/m2) on the performance of PVT-DPSAH, with mass flow rates ranging from 0.011 kg/s to 0.065 kg/s, is investigated.  The optimum mass flow rate   (?) was found to be 0.037 kg/s at solar irradiances ranging from 500 W/m2 to 800 W/m2, with average thermal efficiencies, electrical efficiencies, and fluid output temperatures of 60.7% to 63.4%, 11.25% to 11.02% and 42.96 oC to 49.54 oC, respectively.  PVT collector's maximum combined efficiency was 84.12% at solar irradiance of 800 W/m2 with the ? of 0.065 kg/s.  This study identified RT-47 paraffin-wax-PCM as the best option for the PVT-DPSAH based on the PCM's thermal distribution and melting temperature.

Keywords


Photovoltaic Thermal (PVT), Double Pass Solar Air Heater (DPSAH), PVT-DPSAH, PCM, Paraffin-Wax, Heat transfer, CFD simulation

Full Text:

PDF

References


E. Gul, G. Baldinelli, P. Bartocci, T. Shamim, P. Domenighini, F. Cotana, J. Wang, F. Fantozzi, F. Bianchi, “Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy” Renewable Energy, Volume 207, Pages 672-686, ISSN 0960-148, 2023.

N. Faisal, A. S. A. amid, M. Arif, T. A. Khan, A. Naveed, M. Sadiq, S. Imad Ud din, and A. Ibrahim. 2022. “Solar–Biogas Microgrid: A Strategy for the Sustainable Development of Rural Communities in Pakistan,” Sustainability 14, no. 18: 11124, 2022.

S. Kalogirou, “The potential of solar industrial process heat applications,” Appl. Energy, vol. 76, no. 4, pp. 337–361, 2003.

V. V Tyagi, S. C. Kaushik, and S. K. Tyagi, “Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1383–1398, 2012.

V. Siva Reddy, S. C. Kaushik, K. R. Ranjan, and S. K. Tyagi, “State-of-the-art of solar thermal power plants—A review,” Renew. Sustain. Energy Rev., vol. 27, pp. 258–273, 2013.

M. A. A. Rahmat, A. S. A. Hamid, Y. Lu, M. Amir A. Ishak, S. Z. Suheel, A. Fazlizan, and A. Ibrahim, “An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro,” Sustain., vol. 14, no. 20, 2022.

S. A. Nagalkar, A. B. Kanase-Patil, and N. A. Phadtare, “Heat transfer enhancement in solar air heater having multi-arc shape artificial roughness with gap,” in 2015 International Conference on Technologies for Sustainable Development (ICTSD) : IEEE, pp. 1–6, 2015.

T. Salameh, W. Siddiuue, A. Raheem, and A. H. A. Alami, “Evaluation of Thermal Performance Factor of Novel Two-Pass, Ribbed, U-Shaped Channel for Solar Air Heater,” in 2020 Advances in Science and Engineering Technology International Conferences (ASET) : IEEE, pp. 1–4. 2020.

B. Gupta, A. Kumar, R. Kushwaha, and A. P. Shukla, “Experimental and CFD Analysis of Solar Air Heater with Rectangular Shaped Hollow Bodies,” in 2018 2nd International Conference on Green Energy and Applications (ICGEA) : IEEE, pp. 69–73, 2018.

L. B. Y. Aldabbagh, F. Egelioglu, and M. Ilkan, “Single and double pass solar air heaters with wire mesh as packing bed,” Energy, vol. 35, no. 9, pp. 3783–3787, 2010.

A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, and B. M. Moharram, “Thermal performance investigation of double pass-finned plate solar air heater,” Appl. Energy, vol. 88, no. 5, pp. 1727 1739, 2011.

R. Nowzari, N. Mirzaei, L. B. Y. Aldabbagh, “Finding the best configuration for a solar air heater by design and analysis of experiment,” Energy Convers. Manag., vol. 100, pp. 131–137, 2015.

A. Fudholi, M. H. Ruslan, M. Y. Othman, M. Yahya, Supranto, A. Zaharim, and K. Sopian, “Experimental study of the double-pass solar air collector with staggered fins,” Int. Conf. Syst. Sci. Simul. Eng. - Proc., no. February 2015, pp. 410–414, 2010.

A. Fudholi, K. Sopian, M. Y. Othman, M. H. Ruslan, and B. Bakhtyar, “Energy analysis and improvement potential of finned double-pass solar collector,” Energy Convers. Manag., vol. 75, pp. 234–240, 2013.

A. M. Bassam, K Sopian, A Ibrahim, M Faizal Fauzan, A. B. Al-Aasam, and G. Y. Abusaibaa, “Experimental analysis for the photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube nanofluid,” Case Stud. Therm. Eng., vol. 41, no. August 2022, p. 102579, 2023.

F. S. Javadi, H. S. C. Metselaar, and P. Ganesan, “Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review,” Sol. Energy, vol. 206, pp. 330–352, 2020.

C. Zhu, S. Yan, C. Mei, B. Li, and Q. Luo, “Simulation Analysis of a Novel Phase Change Thermal Storage Solar Collector,” in 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE) : IEEE, pp. 1125–1129, 2021.

S. Riffat, B. Mempouo, and W. Fang, “Phase change material developments: a review,” Int. J. Ambient Energy, vol. 36, 2013.

T. Klemm, A. Hassabou, A. Abdallah, O. Andersen, “Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules,” Energy Procedia, vol. 135, pp. 193–202, 2017.

M. Naderi, B. M. Ziapour, M. Y. Gendeshmin, “Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock,” J. Energy Storage, vol. 36, no. October 2020, p. 102384, 2021.

A. K. Goel, S. N. Singh, B. N. Prasad, “Experimental investigation of thermo-hydraulic efficiency and performance characteristics of an impinging jet-finned type solar air heater,” Sustain. Energy Technol. Assessments, vol. 52, no. PB, p. 102165, 2022.

S. Singh, “Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater,” Renew. Energy, vol. 145, pp. 1361–1387, 2020.

M. Al-Damook, Z. A. H. Obaid, M. Al-Qubeissi, D. Dixon-Hardy, J. Cottom, P. J. Heggs, “CFD modeling and performance evaluation of multipass solar air heaters,” Numer. Heat Transf. Part A Appl., vol. 76, no. 6, pp. 438–464, 2019.

E. Touti, M. Masmali, M. Fterich, H. Chouikhi, “Experimental and numerical study of the PVT design impact on the electrical and thermal performances,” Case Stud. Therm. Eng., vol. 43, no. January, p. 102732, 2023.

A. S. Yadav, T. Alam, G. Gupta, R. Saxena, N. K. Gupta, K. V. Allamraju, R. Kumar, N. Sharma, A. Sharma, U. Pandey, and Y. Agrawal, “A Numerical Investigation of an Artificially Roughened Solar Air Heater,” Energies, vol. 15, no. 21, 2022.

A. S. Yadav and J. L. Bhagoria, “Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate,” Sci. World J., vol. 2013, p. 827131, 2013.

A. S. Yadav, J. L. Bhagoria, “A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate,” Energy, vol. 55, pp. 1127–1142, 2013.

M. K. Hussain, A. M. Rasham, B. M. Alshadeedi, “Finite Element Modeling Of Finned Double-Pass Solar Air Heaters,” in 2021 4th International Conference on Energy Conservation and Efficiency (ICECE) : IEEE, pp. 1–6, 2021.

A. Ibrahim, M. Y. Othman, M. H. Ruslan, S. Mat, K. Sopian, “Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 352–365, 2011.

A. D. Tuncer, A. Khanlari, A. Sözen, E. Y. Gürbüz, C. ?irin, A. Gungor, “Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications,” Renew. Energy, vol. 160, pp. 67–85, 2020.

J. A. Ghani, F. F. Mohd Nasir, H. A. Rahman, W. F. H. W. Zamri, M. S. Kasim, S. S. Muhamad, “Computational fluid dynamic analysis on tribological performance under hydrodynamic lubrication of dimple textured surface produced using turning process,” Wear, vol. 477, no. April, p. 203898, 2021.

A. F. Ismail, A. S. A. Hamid, A. Ibrahim, H. Jarimi, K. Sopian, “Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock,” Energies, vol. 15, no. 3, 2022.

J. Assadeg, Ali H. A. Al-Waeli, A. Fudholi, K. Sopian, “Energetic and exergetic analysis of a new double pass solar air collector with fins and phase change material,” Sol. Energy, vol. 226, pp. 260–271, 2021.

M. García-Fuente, D. González-Peña, C. Alonso-Tristán, “A Numerical Simulation of an Experimental Melting Process of a Phase-Change Material without Convective Flows,” Appl. Sci., vol. 12, no. 7, 2022.

H. Niazmand, H. Talebian, M. Mahdavikhah, “Bed geometrical specifications effects on the performance of silica/water adsorption chillers,” Int. J. Refrig., vol. 35, no. 8, pp. 2261–2274, 2012.

A. Fudholi, K. Sopian, M. H. Ruslan, M. Y. Othman, “Performance and cost benefits analysis of double-pass solar collector with and without fins,” Energy Convers. Manag., vol. 76, pp. 8–19, 2013.

A. H. Jaaz, K. Sopian, T. S. Gaaz, “Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated,” Results in Physics, Volume 9, Pages 500-510, ISSN 2211-3797, 2018.

M. M. Matheswaran, T. V. Arjunan, D. Somasundaram, “Analytical investigation of solar air heater with jet impingement using energy and exergy analysis,” Sol. Energy, vol. 161, no. October 2017, pp. 25–37, 2018.

A. R. A. Elbar, H. Hassan, “Energy, exergy and environmental assessment of solar still with solar panel enhanced by porous material and saline water preheating,” J. Clean. Prod., vol. 277, p. 124175, 2020.

W. E. Ewe, A. Fudholi, K. Sopian, R. Moshery, N. Asim, W. Nuriana, A. Ibrahim, “Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector,” Energy, vol. 254, p. 124366, 2022.

N. S. Nazri, A. Fudholi, B. Bakhtyar, C. H. Yen, A.Ibrahim, M. H. Ruslan, S. Mat, and K. Sopian, “Energy economic analysis of photovoltaic-thermal-thermoelectric (PVT-TE) air collectors,” Renew. Sustain. Energy Rev., vol. 92, no. April, pp. 187–197, 2018.

A.Fudholi, M. Zohri, N. S. B. Rukman, N. S. Nazri, M. Mustapha, C. H. Yen, M. Mohammad, K. Sopian, “Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study,” Renew. Sustain. Energy Rev., vol. 100, no. July 2018, pp. 44–51, 2019.

M. Yusof, M. Y. Othman, B. Yatim, K. Sopian, M. N. A. Bakar, Performance Analysis Of a Double-Pass Photovoltaic/Thermal (PV/T) Solar Collector with CPC and Fins, Renewable Energy, Volume 30, Issue 13, Pages 2005-2017, ISSN 0960-1481,2005.

C. Demartino, F. Ricciardelli, Aerodynamics of nominally circular cylinders: A review of experimental results for Civil Engineering applications, Engineering Structures, Volume 137, Pages 76-114, ISSN 0141-0296, 2017.




DOI (PDF): https://doi.org/10.20508/ijrer.v13i3.14136.g8814

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4