Effect of Torrefaction Temperature on Physical Properties of Biopellet from Variant Biomass Waste

Mareli Telaumbanua, Febryan Kusuma Wisnu, Agus Haryanto, Siti Suharyatun, Agung Wahyudi

Abstract


This study was conducted to analyze the effect of torrefaction temperature on biopellets, which are densified biomass from cassava stems, corncobs, elephant grass, bagasse, and rice straw. The torrefaction temperature factors were non-torrefied biopellet, 220 °C, 240 °C, 260 °C, and 280 °C. The experimental design used was a two-factor completely randomized design with three replications. When tested for least significant difference (LSD) on moisture content (MC) parameters, the results showed a significant difference where temperatures of 220 °C, 240 °C, and 260 °C resulted in the lowest mean MC value of 0.71%. The torrefaction temperature also showed a significant difference in the density parameter, with the highest average density produced at 220 °C and 240 °C at 0.66 N/m3. The torrefaction temperature did not show a significant difference in water absorption. However, when compared with non-torrefied biopellets, the average water absorption value showed a significant difference in the LSD test, 16.07% for non-torrefied biopellets and 13.09% for torrefied biopellets. The hydrophobicity test showed that the best torrefaction temperature for corncob biopellet was 280 °C. At this temperature, the biopellet did not experience physical and watercolor changes for 24 hours under extreme conditions (immersed in water).


Keywords


Biopellet; Torrefaction; Moisture Content; Water Absorption; Density; Hydrophobicity

Full Text:

PDF

References


F. Ayadi, I. Colak, I. Garip, and H. I. Bulbul, “Impacts of Renewable Energy Resources in Smart Grid,” in 2020 8th International Conference on Smart Grid (icSmartGrid), Paris, France, Jun. 2020, pp. 183–188. doi: 10.1109/icSmartGrid49881.2020.9144695.

K. E. Okedu, H. A. Nadabi, and A. Aziz, “Prospects of Solar Energy in Oman: Case of Oil and Gas Industries,” International Journal of Smart Grid, vol. 3, no. 3, pp. 138–151, 2019, doi: 10.20508/ijsmartgrid.v3i3.68.g63.

H. I. Bulbul, M. Colak, A. Colak, and S. Bulbul, “Special session 1: Public awareness and education for renewable energy and systems,” in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, Nov. 2017, pp. 12–12. doi: 10.1109/ICRERA.2017.8191076.

M. Telaumbanua, S. Triyono, A. Haryanto, and F. K. Wisnu, “CONTROLLED ELECTRICAL CONDUCTIVITY (EC) OF TOFU WASTEWATER AS A HYDROPONIC NUTRITION,” Procedia Environmental Science, Engineering and Management, vol. 6, no. 3, pp. 453–462, 2019.

M. E. Shayan, G. Najafi, and A. Nazari, “The Biomass Supply Chain Network AutoRegressive Moving Average Algorithm,” International Journal of Smart Grid, vol. 5, no. 1, pp. 15–22, 2021.

Kementerian Energi dan Sumber Daya Mineral, Indonesia Energy Outlook 2019. Jakarta, 2019.

F. K. Wisnu, S. Rahayoe, R. Wijaya, M. Telaumbanua, and A. Haryanto, “MATHEMATICAL MODEL OF PHYSICAL PROPERTIES CHANGE OF COCONUT SAP IN THE VACUUM EVAPORATOR,” Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), vol. 10, no. 2, pp. 252–263, 2020, doi: 10.23960/jtep-l.v10.i2.252-262.

W. Liu, Z. Zhang, X. Xie, Z. Yu, K. von Gadow, J. Xu, S. Zhao, and Y. Yang, “Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments,” Sci Rep, vol. 7, no. 1, p. 39857, 2017, doi: 10.1038/srep39857.

K. Sivabalan, S. Hassan, H. Ya, and J. Pasupuleti, “A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply,” J. Phys.: Conf. Ser., vol. 1831, no. 1, p. 012033, Mar. 2021, doi: 10.1088/1742-6596/1831/1/012033.

S. S. Munawar and B. Subiyanto, “Characterization of Biomass Pellet Made from Solid Waste Oil Palm Industry,” Procedia Environmental Sciences, vol. 20, pp. 336–341, 2014, doi: 10.1016/j.proenv.2014.03.042.

R. Kizuka, K. Ishii, S. Ochiai, M. Sato, A. Yamada, and K. Nishimiya, “Improvement of Biomass Fuel Properties for Rice Straw Pellets Using Torrefaction and Mixing with Wood Chips,” Waste Biomass Valor, vol. 12, no. 6, pp. 3417–3429, Jun. 2021, doi: 10.1007/s12649-020-01234-8.

Y. Wang, Y. Sun, and K. Wu, “Methods to Determine the Interactions Between the Biomass and the Pellet Channel During Biomass Pelletizing Process,” Waste Biomass Valor, vol. 11, no. 8, pp. 4469–4480, Aug. 2020, doi: 10.1007/s12649-019-00755-1.

B. De Freitas Homem De Faria, C. Lanvin, J. Valette, P. Rousset, A. De Cássia Oliveira Carneiro, A. Caldeira-Pires, and K. Candelier, “Effect of Leaching and Fungal Attacks During Storage on Chemical Properties of Raw and Torrefied Biomasses,” Waste Biomass Valor, vol. 12, no. 3, pp. 1447–1463, Mar. 2021, doi: 10.1007/s12649-020-01081-7.

A. B. Nasrin, Y. M. Choo, W. S. Lim, L. Joseph, S. Michael, M. H. Rohaya, A. A. Astimar, and S. K. Loh, “Briquetting of Empty Fruit Bunch Fibre and Palm Shell as a Renewable Energy Fuel,” Journal of Engineering and Applied Science, vol. 6, pp. 446–451, 2011.

A. Zikri, Erlinawati, and I. Rusnaldi, “Uji Kinerja Rotary Dryer Berdasarkan Efisiensi Termal Pengering Serbuk Kayu untuk Pembuatan Biopellet.,” Jurnal Teknik Kimia, vol. 2, no. 21, pp. 50–58, 2015.

P. Fellows, Food Processing Technology Principles and Practice. New York: Ellis Horwood, 1990.

W. Hidayat, I. T. Rani, T. Yulianto, I. G. Febryano, D. A. Iryani, U. Hasanudin, S. Lee, S. Kim, J. Yoo, and A. Haryanto, “Peningkatan Kualitas Pelet Tandan Kosong Kelapa Sawit melalui Torefaksi Menggunakan Reaktor Counter-Flow Multi Baffle (COMB),” J. Rek. Pros., vol. 14, no. 2, p. 169, Dec. 2020, doi: 10.22146/jrekpros.56817.

A. Ambya, T. Gunarto, E. Hendrawaty, F. S. D. Kesumah, and F. K. Wisnu, “FUTURE NATURAL GAS PRICE FORECASTING MODEL AND ITS POLICY IMPLICATION,” IJEEP, vol. 10, no. 5, pp. 64–70, Aug. 2020, doi: 10.32479/ijeep.9676.

M. Yesilbudak, M. Colak, R. Bayindir, and H. I. Bulbul, “Very-short term modeling of global solar radiation and air temperature data using curve fitting methods,” in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, Nov. 2017, pp. 1144–1148. doi: 10.1109/ICRERA.2017.8191233.

V. T. P. Sidabutar, “Kajian Peningkatan Potensi Ekspor Pelet Kayu Indonesia sebagai sumber Energi Biomassa yang Terbarukan,” Jurnal Ilmu Kehutanan, vol. 12, no. 2, pp. 99–116, 2017.

A. Widarti, Energi Terbarukan dari Batang Kelapa Sawit : Konversi Menggunakan Proses Torefaksi. Bogor: Institut Pertanian Bogor, 2017.

E. Arsad, Sifat Fisik dan Kimia Wood Pellet dari Limbahh Industri Perkayuan sebagai Sumber Energi Alternatif. Banjarbaru: Balai Riset dan Standardisasi Industri, 2014.

A. Kaur, M. Roy, and K. Kundu, “Densification of Biomass by Briquetting : a Review,” International Journal of Recent Scientific Research, vol. 8, no. 10, pp. 20561–20568, 2017.

A. Brunerová, M. Müller, V. Šleger, H. Ambarita, and P. Valášek, “Bio-Pellet Fuel from Oil Palm Empty Fruit Bunches (EFB): Using European Standards for Quality Testing,” Sustainability, vol. 10, no. 12, p. 4443, Nov. 2018, doi: 10.3390/su10124443.

S. A. S. Jämsä and P. Viitaniemi, “Heat Treatment of Wood: Better Durability without Chemical,” Proceedings of Special Seminar Antibes. France, 2001.

Z. Liu, X. Liu, B. Fei, Z. Cai, and Y. Yu, “The Properties of Pellets from Mixing Bamboo and Rice Straw,” Renewable Energy, vol. 55, pp. 1–5, 2013.

A. Haryanto, R. Nita, M. Telaumbanua, S. Suharyatun, U. Hasanudin, W. Hidayat, D. A. Iryani, S. Triyono, Amrul, and F. K. Wisnu, “Torréfaction to improve biomass pellet made of oil palm empty fruit bunch,” IOP Conference Series: Earth and Environmental Science, vol. 749, 2020, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/749/1/012047/meta

Badan Standardisasi Nasional, Pelet Biomassa untuk Energi SNI 8675:2018. Jakarta, 2018.

European Pellet Council (EPC), Handbook of Certification of Wood Pellets for Purposes (Version 2) EN 14961-2. Brissels, Belgium, 2013.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i1.12651.g8375

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4