Comparative Electricity Generation by Two Locally Produced Corncob Pyrochar Electrodes and Graphite using Microbial Fuel Cell Technology

Musa Bishir, Marium Tariq, Dominik Wüst, Lena Schleicher, Julia Steuber, Andrea Kruse

Abstract


There are growing interests in microbial fuel cells (MFCs) for anaerobic bioenergy generation. MFC uses electrodes and organic wastewater as substrate for electrogenic bacteria to catabolize and generate power. Researchers in this discipline continue to be most interested in finding suitably affordable electrode materials. The focus of this study was on comparative bioelectricity generation from process water of hydrothermal carbonization (HTC) (pH = 5.99) and treated–biogas digestate (pH = 7.97) using locally developed corncob pyrochar electrodes and graphite in dual-chambered MFC. The electrodes used in this study were graphite rod (non-porous and very low surface area), potassium hydroxide (KOH)–activated corncob pyrochar (KAC) of Brunauer-Emmett-Teller (BET) surface area, 1626 m2 / g and steam- activated corncob pyrochar (SAC) with 485.8 m2 / g. Each electrode was separately tested in the MFC, some charged with HTC process water, and others with treated biogas digestate. An overnight culture of actively dividing cells of Shewanella oneidensis MR-1 (Electro-active bacterium) at logarithmic phase of growth was seeded into each of the anode chamber as inoculum. The anode chambers were sealed off to achieve anaerobiosis and the cathode chambers sparged continuously with air. The MFCs were operated for 30 d and results obtained were recorded. The highest power outputs achieved were 323.8 µW and 316.8 µW from HTC process water with SAC and biogas digestate with KAC electrodes respectively at an external load of 47 ?. The initial Chemical Oxygen Demand (48780 mg / L), Dissolved Organic Carbon (4000 mg / L), and Total bounded Nitrogen (5600 mg L-1) of the biogas digestate decreased significantly to 36405, 3610 and 4300 mg / L respectively in the MFC with KAC electrodes. A Coulombic efficiency of 75 % was recorded from the MFC operated with treated biogas digestate and KAC electrode in a significantly shorter residence time, making it more efficient than its counterpart with SAC electrode, which had a lower Coulombic efficiency of 64 %.


Keywords


Microbial Fuel Cell; Electrodes; Wastewater; Electrogenic Bacteria; Bioelectricity

Full Text:

PDF

References


IEA, “Africa Energy Outlook 2014,” IEA, Paris, 2014. https://www.iea.org/reports/africa-energy-outlook-2014.

D. R. Lovley, “Microbial fuel cells: novel microbial physiologies and engineering approaches.,” Current Opinion in Biotechnology, vol. 17, no. 3, pp. 327-332., 2006. DOI: 10.1016/j.copbio.2006.04.006..

B. Zechendorf, “‘Sustainable development: How can biotechnology contribute?’.,” Trends in Biotechnology, vol. 17, no. 6, p. 219–225., 1999. DOI: 10.1016/s0167-7799(98)01297-9.

P. Pandey, V. N. Shinde, R. L. Deopurkar, S. P. Kale, S. A. Patil and D. Pant, “Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery.,” Applied Energy, vol. 168, p. 706–723., 2016. DOI: https://doi.org/10.1016.

A. Rubio and W. Agila, “Sustainable Energy: A Strategic Overview of Fuel Cells,” 8th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 239-243, 2019. DOI: 10.1109/ICRERA47325.2019.8996868..

G. A. Rubio and W. Agila, “Transient Analysis in Proton Exchange Membrane Fuel Cells: A Critical Review and a Novel Model,” 8th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 244-252, 2019. DOI: 10.1109/ICRERA47325.2019.8996710.

Y. Feng, X. Wang, B. E. Logan and H. Lee, “Brewery Wastewater Treatment Using Air-Cathode Microbial Fuel Cells.,” Applied Microbiology & Biotechnology , vol. 78, no. 5, p. 873–880, 2008. DOI: 10.1007/s00253-008-1360-2 .

K. Vijayaraghavan, D. Ahmad and R. Lesa, “Electrolytic Treatment of Beer Brewery Wastewater.,” Industrial & Engineering Chemistry Research, vol. 45, no. 20, p. 6854–6859, 2006. DOI: https://doi.org/10.1021/ie0604371.

Q. Wen, Y. Wu, D. Cao, L. Zhao and Q. Sun, “Electricity Generation and Modeling of Microbial Fuel Cell from Continuous Beer Brewery Wastewater.,” Bioresource Technology , vol. 100, no. 18, p. 4171–4175, 2009. DOI: 10.1016/j.biortech.2009.02.058.

B. Min and B. Logan, “Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell.,” Environmental Science & Technology , vol. 38, pp. 5809-5814, 2004. DOI: https://doi.org/10.1021/es0491026.

A. Rahman, M. S. Borhan and S. Rahman, “Evaluation of microbial fuel cell (MFC) for bioelectricity generation and pollutants removal from sugar beet processing wastewater (SBPW)’,” Water Science & Technology , vol. 77, no. 2, p. 387–397, 2018. DOI: 10.2166/wst.2017.549..

V. K. Gupta and M. G. Tuohy, Biofuel Technologies, Recent Developments., Heidelberg: Springer, 2013. DOI: 10.1007/978-3-642-34519-7., p. 532.

C. Belghit and A. Djeddi, “Valorization of Agricultural Waste for the Production of Biogas in the framework of Renewable Energy Development in Algeria,” 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), pp. 1-5, 2019. DOI: 10.1109/ICSRESA49121.2019.9182363.

M. Langone and D. Basso, ““Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways”.,” International Journal of Environmental Research and Public Health. , vol. 17, p. 6618, 2020. doi:10.3390/ijerph17186618.

J. Dahlin, M. Nelles and C. Herbes, “Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments.,” Resources Conservation & Recycling , vol. 118, p. 27–38, 2017. DOI:10.1016/j.resconrec.2016.11.020.

R. Nkoa, “Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review.,” Agronomy for Sustainable Development , vol. 34 , p. 473–492, 2014. DOI: https://doi.org/10.1007/s13593-013-0196-z .

A. Cerda, L. Mejias, P. Rodríguez, A. Rodríguez, A. Artola, X. Font, T. Gea and A. Sánchez, “Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts: A first approach.,” Bioresource Technology, vol. 271, p. 409–416, 2019. DOI: https://doi.org/10.1016/j.biortech.2018.09.131 .

T. Hübner and J. Mumme, “Integration of pyrolysis and anaerobic digestion—Use of aqueous liquor from digestate pyrolysis for biogas production.,” Bioresource Technology , vol. 183, p. 86–92, 2015. DOI: 10.1016/j.biortech.2015.02.037 .

A. Funke, J. Mumme, M. Koon and M. Diakité, “Cascaded production of biogas and hydrochar from wheat straw: Energetic potential and recovery of carbon and plant nutrients.,” Biomass Bioenergy, vol. 58, p. 229–237., 2013. DOI: http://dx.doi.org/10.1016/j.biombioe.2013.08.018.

C. Aragón-briceño, A. B. Ross and M. A. Camargo-Valero, “Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment.,” Applied Energy, vol. 208, p. 1357–1369, 2017. DOI: https://doi.org/10.1016/j.apenergy.2017.09.019 .

J. H. Zhang, Q. M. Lin and X. R. Zhao, “The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations.,” Journal of Integrative Agriculture, vol. 13, no. 3, p. 471–482, 2014. DOI: 10.1016/S2095-3119(13)60702-9 .

A. Funke and F. Ziegler, “Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering.,” Biofuels Bioproducts and Biorefining , vol. 4, p. 160–177, 2010. DOI: https://doi.org/10.1002/bbb.198.

F. Merzari, M. Langone, G. Andreottola and L. Fiori, “Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization.,” Critical Reviews in Environmental Science and Technology, vol. 49, p. 947–988., 2019. DOI: https://doi.org/10.1080/10643389.2018.1561104.

T. Huggins, H. Wang, J. Kearns and P. R. Z. J. Jenkins, “Biochar as a sustainable electrode material for electricity production in microbial fuel cells.,” Bioresource Technology , vol. 157, p. 114–119, 2014. DOI: 10.1016/j.biortech.2014.01.058 .

C. T. Sarr, M. B. Camara and B. Dakyo, “Supercapacitors Characterization using Impedance Spectroscopy and taking account Dynamics Constraints and their combinations,” 8th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 359-364, 2019. DOI: 10.1109/ICRERA47325.2019.8997005.

T. S. Hui and M. A. A. Zaini, “Potassium hydroxide activation of activated carbon: A commentary,” Carbon Letters, vol. 16, no. 4, p. 275–280, 2015. DOI: https://doi.org/10.5714/CL.2015.16.4.275.

M. Sevilla and M. M. Titirici, “Hydrothermal carbonization: a greener route towards the synthesis of advanced carbon materials.,” ‘Bol. Grupo Español Carbón’, p. 7–17., 2012.

A. Kouzuma, K. Takuya, H. Atsumi and W. Kazuya, “Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells.,” Frontiers in Microbiology, vol. 6, p. 1–11, 2015. DOI: https://doi.org/10.3389/fmicb.2015.00609.

H. A. Wiatrowski, P. M. Ward and T. Barkay, “Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria.,” Environmental Science & Technology , vol. 40, no. 21, p. 6690–6696, 2006. DOI: 10.1021/es061046g..

L. Shi, B. Chen, Z. Wang, D. A. Elias, M. U. Mayer, Y. A. Gorby, S. Ni, B. H. Lower, D. W. Kennedy, D. S. Wunschel, H. M. Mottaz, M. J. Marshall, E. A. Hill, A. S. Beliaev, J. M. Zachara, J. K. Fredrickson and T. C. Squier, “Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1.,” Journal of Bacteriology, vol. 188, no. 13, p. 4705–4714, 2006. DOI: 10.1128/jb.01966-05.

E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick and D. R. Bond, “Shewanella secretes flavins that mediate extracellular electron transfer.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, p. 3968–3973. , 2008. DOI: 10.1073/pnas.0710525105 .

B. Musa, M. Tariq, J. W. Straten, D. Wüst, J. O. Ajikashile and A. Kruse, “Pyrolysis of Corncobs to Produce Biobased Conductive Materials as Electrodes for Potential Application in Microbial Fuel Cells (MFCs),” International Journal of Renewable Energy Research, vol. 11, no. 3, pp. 1430-1440, 2021..

B. Musa, P. J. Arauzo, M. P. Olszewski and A. Kruse, “Electricity generation in microbial fuel cell from wet torrefaction wastewater and locally developed corncob electrodes.,” Fuel Cells, vol. 21, no. 2, pp. 182-194, 2021. DOI: https://doi.org/10.1002/fuce.202000132.

A. P. Borole, G. Reguera, B. Ringeisen, Z. Wang, Y. Feng and B. H. Kim, “Electroactive biofilms: Current status and future research needs.,” Energy & Environmental Science , vol. 4, no. 12, p. 4813–4834, 2011.

N. Benit and R. A. Stella, “Physicochemical properties of wastewater collected from different sewage sources.,” International Journal of Innovative Science, Engineering and Technology , vol. 2, no. 11, pp. 1-6 , 2015.

V. Kasthuri, P. M. Duane, E. D. Michael, P. L. Douglas, A. S. Daad, J. M. Barbara, B. R. David, C. W. David, N. Miyuki, S. Hiroshi, B. Jutta, S. Erko and H. N. Kenneth, “Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp.,” International Journal of Systematic Bacteriology, vol. 49, pp. 705-724, 1999. DOI: https://doi.org/10.1099/00207713-49-2-705.

B. Min, S. Cheng and B. E. Logan, “Electricity generation using membrane and salt bridge microbial fuel cells,” Water Resources, vol. 39, no. 9, p. 1675–1686, 2005. DOI: 10.1016/j.watres.2005.02.002 .

I. S. Chang, H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson and B. H. Kim, “Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells.,” Journal of Microbiology and Biotechnology, vol. 16, no. 2, p. 163–177., 2006.

Z. Du, H. Li and T. Gu, “A state-of-the-art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy,” Biotechnology Advances , vol. 25, no. 5, p. 464–482, 2007. DOI: 10.1016/j.biotechadv.2007.05.004 .

S. G. A. Flimban, M. I. I. Iqbal, K. Taeyoung and O. Sang, “Overview of recent advancements in the microbial fuel cell from fundamentals to applications: Design, major elements, and scalability.,” Energies , vol. 12, no. 17, p. 3390, 2019. DOI: https://doi.org/10.3390/en121.

K. Rabaey and W. Verstraete, “Microbial fuel cells: Novel biotechnology for energy generation.,” Trends in Biotechnology , vol. 23, no. 6, p. 291–298, 2005. DOI: 10.1016/j.tibtech.2005.04.008 .

B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, “Microbial fuel cells: Methodology and technology.,” Environmental Science & Technology , vol. 40, no. 17, p. 5181–5192, 2006. DOI: 10.1021/es0605016 .

V. M. S., G. Mohanakrishna, S. Srikanth and P. N. Sarma, “Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia,” Fuel. DOI:10.1016/j.fuel.2008.03.002, vol. 87, no. 12, p. 2667–2676, 2008.

D. Wüst, C. Rodriguez, D. Jung, M. Zimmermann, A. Kruse and L. Fiori, “Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar.,” Biomass Conversion and Biorefinery , vol. 134, no. 12, p. 114, 2019.

P. D. Kiely, D. F. Call, M. D. Yates, J. M. Regan and B. E. Logan, “Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera.,” Applied Microbiology & Biotechnology, vol. 88, no. 1, p. 371–380, 2010. DOI: 10.1007/s00253-010-2757-2 .

P. Lamberg and K. L. Bren, “Extracellular Electron Transfer on Sticky Paper Electrodes: Carbon Paste Paper Anode for Microbial Fuel Cells.,” ACS Energy Letters , vol. 1, no. 5, pp. 895-898, 2016. DOI: https://doi.org/10.1021/acsenergylett.6b00435.

X. Wu, Y. Qiao, Z. Shi and C. M. Li, “Enhancement of interfacial bioelectrocatalysis in Shewanella microbial fuel cells by a hierarchical porous carbon–silica composite derived from distiller's grains.,” Sustainable Energy & Fuels, vol. 2, no. 3, p. 655–662, 2018. DOI: https://doi.org/10.1039/C7SE00560A.

O. Schaetzle, F. Barrière and K. Baronian, “Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity.,” Energy & Environmental Science, vol. 1, no. 6, p. 607, 2008. DOI: https://doi.org/10.1039/B810642H.

A. S. Galushko and B. Schink, “Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.,” Archives of Microbiology , vol. 174, no. 5, p. 314–321, 2000. DOI: 10.1007/s002030000208 .

J. E. Butler, R. H. Glaven, A. Esteve-Núñez, C. Núñez, E. S. Shelobolina, D. R. Bond and D. R. Lovley, “Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens.,” Journal of Bacteriology, vol. 188, no. 2, p. 450–455, 2006. DOI: 10.1128/JB.188.2.450-455.2006.

A. Esteve-Núñez, C. Núñez and D. R. Lovley, “Preferential reduction of FeIII over fumarate by Geobacter sulfurreducens.,” Journal of Bacteriology , vol. 186, no. 9, p. 2897–2899, 2004. DOI: 10.1128/jb.186.9.2897-2899.2004 .

A. Esteve-Núñez, M. Rothermich, M. Sharma and D. Lovley, “Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.,” Environmental Microbiology , vol. 7, no. 5, p. 641–648, 2005. DOI: 10.1111/j.1462-2920.2005.00731.x .

L. Linke, Z. Lijuan and S. F. Y. Li, “Evaluation of the performance of zero-electrolyte- discharge microbial fuel cell based on the type of substrate.,” RSC Advances , vol. 7, p. 4070–4077, 2017. DOI: https://doi.org/10.1039/C6RA27513C.

A. S. Deval, H. A. Parikha, A. Kadier, K. Chandrasekhar, A. M. Bhagwat and A. K. Dikshi, “Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation.,” International Journal of Hydrogen Energy , vol. 42, no. 2, p. 1130–1141, 2017. DOI: 10.1016/j.ijhydene.2016.11.114.

D. Y. Lyon, F. Buret, M. T. Vogel and J. M. Monier, “Is resistance futile? Changing external resistance does not improve microbial fuel cell performance’,” Bioelectrochemistry , vol. 78, no. 1, p. 2–7, 2010. DOI: 10.1016/j.bioelechem.2009.09.001 .

G. Mohanakrishna, M. S. Venkata and P. N. Sarma, “Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation.,” Journal of Hazardous Materials, vol. 177, no. 1–3, p. 487–494, 2010. DOI: 10.1016/j.jhazmat.2009.12.059 .

X. Li, N. Zhu, Y. Wang, P. Li, P. Wu and Wu, “J. Animal Carcass Wastewater Treatment and Bioelectricity Generation in Up-Flow Tubular Microbial Fuel Cells: Effects of HRT and Non-Precious Metallic Catalyst,,” Bioresource Technology, vol. 128., p. 454–460, 2013. DOI: 10.1016/j.biortech.2012.10.053 .

M. Tariq, “Comparative Performance of the HTC Process Water and Biogas Digestate in Microbial Fuel Cells using Corncob Developed Electrodes,” Master Thesis. University of Hohenheim, Stuttgart, Germany, 2020.

B. Musa, M. Tariq, D. Wüst, L. Schleicher, J. Steuber and A. Kruse, “Comparative Electricity Generation by Two Locally Produced Corncob Pyrochar Electrodes and Graphite using Microbial Fuel Cell Technology.,” figshare. Dataset., 2021. https://doi.org/10.6084/m9.figshare.16540143.v1.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12572.g8322

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4