Performance Optimization of ZnS/CIGS Solar Cell with over 25% Efficiency Enabled by Using a CuIn3Se5 OVC Layer

Abu Kowsar, Md. Billal Hosen, Md. Karamot Ali, Md. Asaduzzaman, Ali Newaz Bahar

Abstract


Chalcopyrite CIGS solar cells have been demonstrated with the highest efficiency for thin-film solar cell families. Herein, the effects of thickness and bandgap of cadmium (Cd) free ZnS buffer layer grown on CIGS absorber with an ordered vacancy compound (OVC) at buffer/absorber interface in CIGS solar cell structure have been investigated using ADEPT 2.1 simulator. The ZnS buffer possesses a wider energy bandgap than the traditional CdS buffer layer, which substantiates the higher conversion efficiency of this solar cell, allowing the photons of lower wavelength into the CIGS layer. Besides, CuIn3Se5 has been used as an OVC layer that assists to improve the conversion efficiency to an optimized level of over 25% by reducing the recombination rate. Moreover, the optimized short circuit current (Jsc) and corresponding open-circuit voltage (Voc) yield a higher fill factor (FF) of 86.22%, which, therefore, results in an optimum efficiency of the CIGS cell estimated as 25.68% under AM 1.5 irradiance.

Keywords


CIGS solar cell; thin-film; Cd-free; ZnS buffer; OVC; efficiency

Full Text:

PDF

References


K. Kim, I. Jeong, Y. Cho, D. Shin, S. Song, S. K. Ahn, et al., "Mechanisms of extrinsic alkali incorporation in CIGS solar cells on flexible polyimide elucidated by nanoscale and quantitative analyses," Nano Energy, vol. 67, p. 104201, 2020.

A. Kowsar, S. F. U. Farhad, M. Rahaman, M. S. Islam, A. Y. Imam, S. C. Debnath, "Progress in major thin-film solar cells: Growth technologies, layer materials and efficiencies," International Journal of Renewable Energy Research (IJRER), vol. 9, pp. 579-597, 2019.

J. Lindahl, J. Keller, O. Donzel-Gargand, P. Szaniawski, M. Edoff, and T. Törndahl, "Deposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu (In, Ga) Se2 solar cells," Solar Energy Materials and Solar Cells, vol. 144, pp. 684-690, 2016.

T. Kato, J.-L. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, "Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S) 2," IEEE Journal of Photovoltaics, vol. 9, pp. 325-330, 2018.

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, "Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%," IEEE Journal of Photovoltaics, vol. 9, pp. 1863-1867, 2019.

M. A. Green, E. D. Dunlop, J. Hohlâ€Ebinger, M. Yoshita, N. Kopidakis, and A. W. Hoâ€Baillie, "Solar cell efficiency tables (Version 55)," Progress in Photovoltaics: Research and Applications, vol. 28, pp. 3-15, 2020.

R. Bhattacharya and K. Ramanathan, "Cu (In, Ga) Se2 thin film solar cells with buffer layer alternative to CdS," Solar Energy, vol. 77, pp. 679-683, 2004.

M. Asaduzzaman, M. Hasan, and A. N. Bahar, "An investigation into the effects of band gap and doping concentration on Cu (In, Ga) Se 2 solar cell efficiency," SpringerPlus, vol. 5, p. 578, 2016.

M. P. Waalkes, "Cadmium carcinogenesis," Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 533, pp. 107-120, 2003.

D. Hariskos, S. Spiering, and M. Powalla, "Buffer layers in Cu (In, Ga) Se2 solar cells and modules," Thin Solid Films, vol. 480, pp. 99-109, 2005.

N. Naghavi, D. Abouâ€Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, et al., "Buffer layers and transparent conducting oxides for chalcopyrite Cu (In, Ga)(S, Se) 2 based thin film photovoltaics: present status and current developments," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 411-433, 2010.

J. Gray, X. Wang, R. V. K. Chavali, X. Sun, A. Kanti, and J. R. Wilcox, "ADEPT 2.1," 2011.

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, "Influence of the Cu (In, Ga) Se2 thickness and Ga grading on solar cell performance," Progress in Photovoltaics: Research and Applications, vol. 11, pp. 77-88, 2003.

S. H. Song and S. A. Campbell, "Heteroepitaxy and the performance of CIGS solar cells," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013, pp. 2534-2539.

K. E. Haque and M. M. H. Galib, "An investigation into III–V compounds to reach 20% efficiency with minimum cell Thickness in ultrathin-film solar cells," Journal of electronic materials, vol. 42, pp. 2867-2875, 2013.

P. Chelvanathan, M. I. Hossain, and N. Amin, "Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS," Current Applied Physics, vol. 10, pp. S387-S391, 2010.

E. Schlenker, V. Mertens, J. Parisi, R. Reineke-Koch, and M. Köntges, "Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers," Physics Letters A, vol. 362, pp. 229-233, 2007.

M. Asaduzzaman, A. N. Bahar, M. M. Masum, and M. M. Hasan, "Cadmium free high efficiency Cu2ZnSn (S, Se) 4 solar cell with Zn1− xSnxOy buffer layer," Alexandria engineering journal, vol. 56, pp. 225-229, 2017.

H. Wang, I. Shih, and C. Champness, "Studies on monocrystalline CuInSe2 and CuIn3Se5," Thin Solid Films, vol. 361, pp. 494-497, 2000.

S. H. Kwon, S. C. Park, B. T. Ahn, K. H. Yoon, and J. Song, "Effect of CuIn3Se5 layer thickness on CuInSe2 thin films and devices," Solar Energy, vol. 64, pp. 55-60, 1998.

A. Kowsar, S. N. Sakib, M. Billah, S. Dey, K. N. Babi, A. N. Bahar, S. F. U. Farhad, " A novel simulator of multijunction solar cells — MSCS-1D," International Journal of Renewable Energy Research (IJRER), vol. 10(3), Pp. 1369-75, 2020.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices: John wiley & sons, 2006.

R. Jacob, R. Geethu, T. Shripathi, G. S. Okram, V. Ganesan, B. Pradeep, R. R. Philip, "Optoelectronic and low temperature thermoelectric effects in the OVC n-CuIn3Se5 thin films", Physica Status Solidi (a), 209(11), 2195–2200, 2012.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i4.11430.g8100

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4