Above-ground Biomass Allometric Equation and Dynamics Accumulation of Eucalyptus Camaldulensis and Acacia Hybrid Plantations in Northern Thailand

Warakhom Wongchai, Anucha Promwungkwa, Woravit Insuan

Abstract


In order to supply biomass energy in Thailand, fast-growing trees like Eucalyptus and Acacia are large plantations in the region. However, there are few studies on related topics such as biomass growth versus time and tree partitioning. The objectives of the study are to develop biomass equations and characterize biomass dynamics accumulation for E. camaldulensis, E. camaldulensis coppice, and A. hybrid. The study plantation area is 960 hectares in Lampang and Lamphun province, Northern Thailand. The planted density is 1666 trees ha-1. A total of 221 trees for destructive sampling were randomly selected from thirteen sites. Allometric biomass equations for tree components are developed by regressing the diameter at breast height (DBH), tree height (H) and a combination of these. The results show that DBH alone is an optimal predictor variable for all studied species. However, the combination of DBH and H is more accurate than DBH alone. The models show that the total estimated above-ground biomass (AGB) production is 62.78 t ha-1 and 48.87 t ha-1 at the age of 5 years of E. camaldulensis and A. hybrid, respectively. The total estimated AGB production of E. camaldulensis coppice is 18.21 t ha-1 at 3 years of age. The equations developed in the study can be used to estimate the growth of the three species under the same growing conditions: topography, tree growth dimensions, and plantation density.

Keywords


Above-ground biomass; Allometric equations; Eucalyptus camaldulensis; Acacia hybrid.

Full Text:

PDF

References


Ministry of Energy, “Alternative Energy Development Plan (AEDP 2015).†Bangkok, Thailand, 2015.

G. Mao, N. Huang, L. Chen, and H. Wang, “Research on biomass energy and environment from the past to the future: A bibliometric analysis,†Science of The Total Environment, vol. 635, pp. 1081–1090, Sep. 2018, doi: 10.1016/j.scitotenv.2018.04.173.

E. Toklu, “Biomass energy potential and utilization in Turkey,†Renewable Energy, vol. 107, pp. 235–244, Jul. 2017, doi: 10.1016/j.renene.2017.02.008.

T. J. Albaugh, R. A. Rubilar, C. A. Maier, E. A. Acuña, and R. L. Cook, “Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations,†Biomass and Bioenergy, vol. 97, pp. 162–171, Feb. 2017, doi: 10.1016/j.biombioe.2016.12.025.

F. M. Santos, F. de C. Balieiro, D. H. dos S. Ataíde, A. R. Diniz, and G. M. Chaer, “Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil,†Forest Ecology and Management, vol. 363, pp. 86–97, Mar. 2016, doi: 10.1016/j.foreco.2015.12.028.

H. Zhang, D. Guan, and M. Song, “Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China,†Forest Ecology and Management, vol. 277, pp. 90–97, Aug. 2012, doi: 10.1016/j.foreco.2012.04.016.

M. González-García, A. Hevia, J. Majada, and M. Barrio-Anta, “Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain,†Biomass and Bioenergy, vol. 54, pp. 147–157, Jul. 2013, doi: 10.1016/j.biombioe.2013.03.019.

K. Senelwa and R. E. H. Sims, “Fuel characteristics of short rotation forest biomass,†Biomass and Bioenergy, vol. 17, pp. 127–140, 1999.

S. Jacob et al., “Short rotation forestry feedstock: Influence of particle size segregation on biomass properties,†Fuel, vol. 111, pp. 820–828, Sep. 2013, doi: 10.1016/j.fuel.2013.04.043.

E. Gómez-García, G. Biging, J. D. García-Villabrille, F. Crecente-Campo, F. Castedo-Dorado, and A. Rojo-Alboreca, “Cumulative continuous predictions for bole and aboveground woody biomass in Eucalyptus globulus plantations in northwestern Spain,†Biomass and Bioenergy, vol. 77, pp. 155–164, Jun. 2015, doi: 10.1016/j.biombioe.2015.03.026.

J.B. St.Clair, “Family Differences in Equations for Predicting Biomass and Leaf Area in Douglas-Fir (Psueudotsuga menziesii var. menziesii),†Forest Science, vol. 39, no. 4, pp. 743–755, Nov. 1993.

C. Wang, “Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests,†Forest Ecology and Management, vol. 222, no. 1–3, pp. 9–16, 2006.

D. Zianis, P. Muukkonen, R. Mäkipää, and M. Mencuccini, “Biomass and stem volume equations for tree species in Europe,†Silva Fennica Monographs, vol. 4, 2005.

P. Muukkonen and R. Mäkipää, “Biomass equations for European trees,†Silva Fennica, vol. 40, no. 4, pp. 763–773, 2006.

N. António, M. Tomé, J. Tomé, P. Soares, and L. Fontes, “Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass,†Canadian Journal of Forest Research, vol. 37, no. 5, pp. 895–960, 2007.

W. Ounban, L. Puangchit, and S. Diloksumpun, “Development of general biomass allometric equations for Tectona grandis Linn.f. and Eucalyptus camaldulensis Dehnh. plantations in Thailand,†Agriculture and Natural Resources, vol. 50, no. 1, pp. 48–53, Jan. 2016, doi: 10.1016/j.anres.2015.08.001.

T. Verwijst and B. Telenius, “Biomass estimation procedures in short rotation forestry,†Forest Ecology and Management, vol. 121, no. 1–2, pp. 137–146, Aug. 1999.

D. Arias, J. Calvo-Alvarado, D. de B. Richter, and A. Dohrenbusch, “Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica,†Biomass and Bioenergy, vol. 35, no. 5, pp. 1779–1788, May 2011, doi: 10.1016/j.biombioe.2011.01.009.

S. Kuyah, J. Dietz, C. Muthuri, M. van Noordwijk, and H. Neufeldt, “Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes,†Biomass and Bioenergy, vol. 55, pp. 276–284, Aug. 2013, doi: 10.1016/j.biombioe.2013.02.011.

F. Muñoz, R. Rubilar, M. Espinosa, J. Cancino, J. Toro, and M. Herrera, “The effect of pruning and thinning on above ground aerial biomass of Eucalyptus nitens (Deane & Maiden) Maiden,†Forest Ecology and Management, vol. 255, no. 3–4, pp. 365–373, Mar. 2008.

M. Peichl and M. A. Arain, “Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests,†Forest Ecology and Management, vol. 253, no. 1–3, pp. 68–80, Dec. 2007.

J.-Y. Fang, G. G. Wang, G.-H. Liu, and S.-L. Xu, “Forest Biomass of China: An Estimate Based on the Biomass-Volume Relationship,†Ecological Applications, vol. 8, no. 4, pp. 1084–1091, Nov. 1998.

P. Schroeder, S. Brown, J. Mo, R. Birdsey, and C. Cieszewski, “Biomass Estimation for Temperate Broadleaf Forests of the United States Using Inventory Data,†Forest Science, vol. 43, no. 3, pp. 424–434, Aug. 1997.

J. Jozef, B. Konôpka, and M. Lukac, “Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees,†Forest Ecology and Management, vol. 256, no. 5, pp. 1096–1103, Aug. 2008.

R. H. Razakamanarivo, A. Razakavololona, M.-A. Razafindrakoto, G. Vieilledent, and A. Albrecht, “Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar,†Biomass and Bioenergy, vol. 45, pp. 1–10, Oct. 2012, doi: 10.1016/j.biombioe.2011.01.020.

S. J. Sochacki, R. J. Harper, and K. R. J. Smettem, “Estimation of woody biomass production from a short-rotation bio-energy system in semi-arid Australia,†Biomass and Bioenergy, vol. 31, no. 9, pp. 608–616, Sep. 2007.

I. F. Brown, L. A. Martinelli, W. W. Thomas, M. Z. Moreira, C. A. C. Ferreira, and R. A. Victoria, “Uncertainty in the biomass of Amazonian forests: An example from Rondônia, Brazil,†Forest Ecology and Management, vol. 75, no. 1–3, pp. 175–189, Jul. 1995.

M. Zewdie, M. Olsson, and T. Verwijst, “Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia,†Biomass and Bioenergy, vol. 33, no. 3, pp. 421–428, Mar. 2009, doi: 10.1016/j.biombioe.2008.08.007.

C. B. M. Arevalo, T. A. Volk, E. Bevilacqua, and L. Abrahamson, “Development and validation of aboveground biomass estimations for four Salix clones in central New York,†Biomass and Bioenergy, vol. 31, no. 1, pp. 1–12, Jan. 2007.

R. A. Rubilar, H. L. Allen, J. S. Alvarez, T. J. Albaugh, T. R. Fox, and J. L. Stape, “Silvicultural manipulation and site effect on above and belowground biomass equations for young Pinus radiata,†Biomass and Bioenergy, vol. 34, no. 12, pp. 1825–1837, Dec. 2010, doi: 10.1016/j.biombioe.2010.07.015.

S. Kuyah et al., “Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass,†Agriculture, Ecosystems & Environment, vol. 158, pp. 216–224, Sep. 2012, doi: 10.1016/j.agee.2012.05.011.

J. Chave, B. Riera, and M. Dubois, “Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability,†Journal of Tropical Ecology, vol. 17, no. 1, pp. 79–96, 2001.

K. D. Montagu, K. Düttmer, C. V. M. Barton, and A. L. Cowie, “Developing general allometric relationships for regional estimates of carbon sequestration—an example using Eucalyptus pilularis from seven contrasting sites,†Forest Ecology and Management, vol. 204, no. 1, pp. 115–129, Jan. 2005.

R. R. Paula et al., “Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest,†Soil Biology and Biochemistry, vol. 91, pp. 99–108, Dec. 2015, doi: 10.1016/j.soilbio.2015.08.017.

F. C. Balieiro et al., “Contribution of litter and nitrogen to soil under Pseudosamanea guachapele and Eucalyptus grandis plantations,†vol. 39, pp. 597–601, 2004.

D. I. Forrester, J. Bauhus, and A. L. Cowie, “On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii,†Forest Ecology and Management, vol. 209, no. 1–2, pp. 147–155, Apr. 2005.

W. Wongchai, W. Insuan, and A. Promwungkwa, “Energy and Economic Analysis of Eucalyptus Plantation for Woodchips Production in Thailand,†in 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, Oct. 2018, pp. 1–7, doi: 10.23919/ICUE-GESD.2018.8635730.

J.-P. Bouillet et al., “Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo,†Forest Ecology and Management, vol. 301, pp. 89–101, Aug. 2013, doi: 10.1016/j.foreco.2012.09.019.

J. Bauhus, P. K. Khanna, and N. Menden, “Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii,†Canadian Journal of Forest Research, vol. 30, no. 12, pp. 1886–1894, 2000.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i4.11358.g8051

Refbacks



Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4