Natural Photosensitizers for Dye Sensitized Solar Cells

Souad Ali Al-Bat'hi, Iraj Alaei, Iis Sopyan


Dye-sensitized solar cells (DSSCs) were constructed by using the Lawsonia inermis leaves, Sumac/Rhus fruits, and Curcuma longa roots as natural sensitizers of anatase-based nanostructure TiO2 thin film Paint-coated on ITO conducting glass. The orange-red Lawsone, red purple anthocyanin and yellow Curcumin are the main components in the natural dyes obtained from these natural products. A blend of 50 wt% chitosan and 50 wt% polyethylene oxide (PEO) was used as a solid state thin film electrolyte. The polymer blend was complexed with ammonium iodide (NH4I) and some iodine crystals were added to the polymer–NH4I solution to provide I-/I3- redox couple. The ionic conductivity of the polymer electrolyte is 1.18x10-5 S cm-1 at room temperature. Structural and optical properties of the semiconductor thin films were characterized by X-ray diffractometer and UV-VIS spectrophotometer respectively. The XRD shows nanocrystalline structures for TiO2 thin films (D=13nm). The photovoltaic properties of the cell have been studied and the best overall solar energy conversion efficiency of 1.5% was obtained, under AM 1.5 irradiation, with the red purple Sumac/Rhus extract, that showed a reasonable  current density (Jsc = 0.93 mA/cm2).


natural photosensitizers; DSSCS; solid state electrolyte; photovoltaic;solar energy

Full Text:



Y Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl. Phys. 45 L638–L640, (2006).

R. Buscaino, C. Baiocchi, C. Barolo, C. Medana, M. Gratzel, Md.K. Nazeeruddin, “A mass spectrometric analysis of sensitizer solution used for dyesensitized solar cell”, Inorg. Chim. Acta 361798–805, (2008).

G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, “High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary _- conjugated spacer”, Chem. Commun. 2198–2200, (2009)

G. Calogero, G.Di. Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells”, Sol. Energ. Mat. Sol. C 92 1341–1346, (2008).

K. Wongcharee, V. Meeyoo, S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers”, Sol. Energ. Mat. Sol. C 91 566–571, (2007)

M.S. Roy, P. Balraju, M. Kumar, G.D. Sharma, “Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2”, Sol. Energ. Mat. Sol. C 92 909–913, (2008)

Z.-S. Wang et al. “Photophysical and (photo) electrochemical properties of a coumarin dye”, J. Phys. Chem. B 109 3907–3914, (2005)

Z.-S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, “A high-lightharvesting- efficiency coumarin dye for stable dye-sensitized solar cells”, Adv. Mater. 19 1138–1141, (2007)

Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, “Thiophenefunctionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid”, J. Phys. Chem. C 111 7224–7230, (2007)

Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, “Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells”, J. Phys. Chem. C 112 17011–17017, (2008)

R.C. Agrawal and G.P. Pandey, J. Phys. D: Appl. Phys., 41 223001, (2008)

R. K. Nagarale, W.Shin and P.K. Singh, Polym. Chem., 1 388, (2010)

S.A. Mohamad, M.H. Ali, R. Yahya, Z.A. Ibrahim and A.K. Arof, Ionics 13, 235, (2007)

O’Regan, B. & Gra¨ tzel, M.. Nature, 353,737, (1991)

M. K.Nazeeruddin, , Kay, A., Rodico, I., Humphry-Baker, R., Muller, E., Liska, P., Valachopoulos, N., & Gra¨ tzel, M., J. Am. Chem. Soc.,115, 6382, (1993)

F., Cao, Oskam, G., & Searson, C., J. Phys. Chem., 99, , 17071, (1995)

W., Kubo, Murakoshi, K., Kitamura, T., Wada, Y., Hanabusa, K., Shirai, H., & Yanagida, S. Chem. Lett., 1241, (1998)

M., Matsumoto, Miyazaki, H., Matsuhiro, K., Kumashiro, Y., & Takaoka, Y. Solid State Ionics89, 263, (1996)

Mikoshiba, Sumino, H., Yonetsu, M., & Hayase, S. Preprint of 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, (2000).

K., Tennakone, Kumara, G. R. R. A., Kumarasinghe, A. R., Wijayantha, K. G. U., & Sirimanne, P. M. Semicond. Sci. Technol, 10, 1689, (1995)

A.; Sarto Polo, Murakami Iha, N.Y.; Itokazu, M.K. “Metal complex sensitizers in dye-sensitized solar cells”. Coord. Chem. Rev. 248, 1343–1361, (2004),

J.M.R.C. Fernando,; Sendeera, G.K.R. “Natural anthocyanins as photosensitizers for dye-sensitized solar devices”. Res. Comm. Current. Sci., 95, 663–666, (2008)

H.W. Lai,; Su, Y.H.; Teoh, L, “Commercial and natural dyes as photosensitizers for a water-based dye sensitized solar cell loaded with gold nanoparticle”. J. Photochem. Photobiol. A: Chemistry, 195, 307–313, (2008)

Merck Index, 12th Edition, 5406.

A. C. Dweek, "Natural ingredients for colouring and styling". Int. J. Cosmetic Sci. 24 (5) (2002), 287 302, doi:10.1046/j.1467-2494. 00148.x. PMID 18498522, (2002)

F.S. yan, Rhus Linnaeus, Flora of China, Sp. Pl. 1: 265. 1753.

sumac /~katzer/engl/Rhus_cor.html#orig.

JM. Kong, Chia LS, Goh NK, Chia TF, Brouillard R (November 2003). "Analysis and biological activities of anthocyanins". Phytochemistry 64 (5): 923–933, (November 2003).

E.W.C. Chan, et al., "Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species". Food Chemistry 113 (1), 166–172, (2009).

T. M.Kolev, Velcheva, E. A.; Stamboliyska, B. A. "DFT and Experimental Studies of the Structure and Vibrational Spectra of Curcumin". International Journal of Quantum Chemistry 102 (6), 1069–1079, (2005)

C.Giuseppe, et. al., “Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits”, Int. J. Mol. Sci., 11, 254-267, (2010)

R.Castellar, Obon, J.M.; Alacid, M.; Fernandez-lopez, J.A. “Color properties and stability of betacyanins from opuntia fruits”. J. Agric. Food Chem., 51, 2772–2776, (2003)


  • There are currently no refbacks.

Online ISSN: 1309-0127

IJRER is cited in SCOPUS