Identification of thermal parameters of a solar photovoltaic panel in three-dimensional using finite element approach

boulfaf naima, Chaoufi Jamal

Abstract


The focus of this study is to develop a computer program that simulates the thermal performance of photovoltaic (PV) panel. A detailed thermal model of a solar PV panel in three-dimensional using finite element approaches is established to determine the thermal parameters. The PV cell, glass, and tedlar temperatures are predicted. The influence of air velocity, solar flux, and ambient temperature are investigated. Simulation results indicate that whatever the value of air temperature and solar irradiance, the solar cell component has a high temperature. The obtained results also show that the PV panel temperature increases when the solar flux and the ambient temperature increases, consequently, the panel efficiency decreases. Finally, it is found that the highest value of wind speed causes the cooling of solar cells leading to the decrease of the PV panel temperature.


Total Views: 333

Keywords


Finite element approach; Photovoltaic; Thermal model; Temperature

Full Text:

PDF

References


Jones, A.D. & Underwood, C.P, A thermal model for photovoltaic systems, Solar Energy, 70, pp. 349–359, 2001.

Lobera, D. T. & Valkealahti, S., Dynamic thermal model of solar PV systems under varying climatic conditions, Solar Energy, 93, pp. 183–194, 2013.

Skoplaki, E., Boudouvis, A.G.& Palyvos, J.A., A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Materials & Solar Cells, 92, pp. 1393–1402, 2008.

Schott, T., Operation temperatures of PV modules, In: Proceedings of the 6th EC Photovoltaic Solar Energy Conference, pp. 392–396, London, 1985.

Servant, J.M., Calculation of the cell temperature for photovoltaic modules from climatic data, In: Proceedings of the 9th Biennial Congress of ISES – Intersol 85, 370, Montreal, Canada, 1985.

Malik, A.Q. & Damit, S.J.B.H., Outdoor testing of single crystal silicon solar cells, Renewable Energy, 28, pp. 1433–1445, 2003.

Nordmann T. & Clavadetscher L., Understanding temperature effects on PV system performance, Proceedings of the third world conference on photovoltaic energy conversion, pp. 2243–2246, Osaka, Japan, 2003.

Krauter, S.C.W., Development of an integrated solar home system, Solar Energy Materials & Solar Cells, 82, pp. 119–130, 2004.

Franghiadakis, Y. & Tzanetakis, P., Explicit empirical relation for the monthly average cell-temperature performance ratio of photovoltaic arrays, Progress in Photovoltaics Research and Applications, 14, pp. 541–551, 2006.

Chenni, R., Makhlouf, M., Kerbache, T. & Bouzid, A., A detailed modelling method for photovoltaic cells, Energy, 32, pp. 1724–1730, 2007.

Mattiei, M., Notton, G., Cristofari, C., Muselli, M. & Poggi, P., Calculation of the polycrystalline PV module temperature using a simple method of energy balance, Renewable Energy, 31, pp. 553–567, 2006.

Durisch, W., Bitnar, B., Mayor, J.-C., Kiess, H., Lam, K.-H. & Close, J., Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation, Solar Energy Materials & Solar Cells, 91, pp. 79–84, 2007.

Topi, M., Brecl, K. & Sites, J., Effective efficiency of PV modules under field conditions, Progress in Photovoltaics Research and Applications, 15, pp. 19–26, 2007.

Skoplaki, E. & Palyvos, J.A., On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Solar Energy, 83, pp. 614–624, 2009.

Notton, G., Cristofari, C., Mattei, M. & Poggi, P., Modelling of a double-glass photovoltaic module using finite differences, Applied Thermal Engineering, 25, pp. 2854-2877, 2005.

Armstrong, S. & Hurley, W.G., A thermal model for photovoltaic panels under varying atmospheric conditions, Applied Thermal Engineering, 30, pp. 1488–1495, 2010.

Park, K. E., Kang, G. H., Kim, H. I., Yu, G. J. & Kim, J. T., Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module, Energy, 35, pp. 2681–2687, 2010.

Kim, J. P., Lim, H., Song, J. H., Chang, Y. J. & Jeon, C. H., Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation. Solar Energy Materials and Solar Cells, 95, pp. 404–407, 2011.

Salmi, T., Bouzguenda, M., Gastli, A. & Masmoudi, A., Matlab/Simulink Based Modelling of Solar Photovoltaic Cell, International Journal of Renewable Energy Research, 2(2), pp. 214-218, 2012.

Kane, A. & Verma, V., Performance Enhancement of Building Integrated Photovoltaic Module using Thermoelectric Cooling, International Journal of Renewable Energy Research, 3(3), pp. 321-324, 2013.

Vergura, S., Acciani, G. & Falcone, O., 3-D PV-cell Model by means of FEM, IEEE-ICCEP, pp. 35-40, Capri, Italy, 9-11 June 2009.

Usama Siddiqui, M., Arif, A.F.M., Kelley, L. & Dubowsky, S., Three-dimensional thermal modeling of a photovoltaic module under varying conditions, Solar Energy, 86, pp. 2620–2631, 2012.

Jicheng Zhou, Qiang Yi, Yunyun Wang & Zhibin Ye., Temperature distribution of photovoltaic module based on finite element simulation, Solar Energy, 111, pp. 97-103, 2015.

Lee, Y. & Tay, A.A.O., Finite element thermal analysis of a solar photovoltaic module, Energy Proceeding, 15, pp. 413–420, 2012.

Dhatt, D., Touzot, G., Lefrançois, L., Méthode des éléments finis, Paris : Hermes Science, 2005.

Boulfaf, N., Chaoufi, J., Ghafiri, A. & Elorf, A., Thermal Study of Hybrid Photovoltaic Thermal (PV-T) Solar Air Collector Using Finite Element Method, International Journal of Renewable Energy Research, 6(1), pp. 171-182, 2016.


Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

www.ijrer.org

ijrereditor@gmail.com; ilhcol@gmail.com;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Thomson Reuters)